Microenvironment and Immunology Interleukin-5 Facilitates Lung Metastasis by Modulating the Immune Microenvironment
نویسندگان
چکیده
Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNg-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis. Cancer Res; 75(8); 1624–34. 2015 AACR.
منابع مشابه
Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment.
Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of ...
متن کاملInflammation, a Key Factor in Cancer Ambush
Inflammatory condition is the consequence of defensive mechanism of immune system against viral and bacterial infection, tissue injury, UV radiation, stress and etc. Persistently acute inflammation leads to chronic phase which is characterized by production of pro-inflammatory mediators from T cells. These molecules (e.g. IL-6, TNF-&alpha, IL-1&beta and IL-17) are mostly pleiotropic cytokines i...
متن کاملMicroenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis.
Inflammatory cytokines modulate immune responses in the tumor microenvironment during progression/metastasis. In this study, we have assessed the role of IL-1 and IL-17 in the control of antitumor immunity versus progression in a model of experimental lung metastasis, using 3LL and B16 epithelial tumor cells. The absence of IL-1 signaling or its excess in the lung microenvironment (in IL-1β and...
متن کاملChemo-Immunotherapy with Oxaliplatin and Interleukin-7 Inhibits Colon Cancer Metastasis in Mice
Combination of immunotherapy and chemotherapy has shown promise for cancer. Interleukin-7 (IL-7) can potentially enhance immune responses against tumor, while oxaliplatin (OXP), a platinum-based drug, can promote a favorable immune microenvironment and stimulate anticancer immune responses. We evaluated the anti-tumor activity of IL-7 combining OXP against a murine colon carcinoma in vitro and ...
متن کاملThe role of interleukin-8 in cancer cells and microenvironment interaction.
Abstract Interleukin (IL)-8, a cytokine of the CXC chemokine family that was originally classified as a neutrophil chemoattractant, is now reported to play an important role in tumor progression and metastasis in a variety of human cancers, including lung cancers. IL-8 biologic activity in tumors and the tumor microenvironment may contribute to tumor progression through its potential function i...
متن کامل